
Polynomial-Time Primality Testing

Aaryan Sukhadia

”Advanced” Minicourse, PROMYS 2022

Contents

1 Introduction 1

2 The AKS Algorithm 2

3 Proof of AKS 2

3.1 Validity of Step 3 . 2

3.2 Validity of Step 4 . 4

4 Running Time Analysis 6

5 Other Primality Tests 8

1 Introduction

Remark. All logarithms mentioned are base 2.

What does it mean for an algorithm to be rapid? For our purposes it means we want the time it

takes to run to scale well with input size.

Definition. A polynomial time algorithm that takes an input of log n bits will

terminate in less than C(log n)k steps for all inputs, for constants C, k.

In general, factoring a number cannot be done in polynomial time. A naive algorithm factoring n

would have to check up to
√
n in the worst case scenario, and so the number of steps clearly cannot

be logarithmic in n.

In a similar vein, it was thought for a while that testing if a number was prime was not doable in

a polynomial time. This was left unexplained for several decades.

1

2 The AKS Algorithm

In 2002, Agrawal, Kayal and Saxena found the first known algorithm for primality testing that ran

in polynomial time. The algorithm is as follows: Given a number n,

1. Check that n is not a perfect power

2. Check that n has no prime factors ≤ 100(log n)5

3. Find some r ≤ 100(log n)5 such that the order of n in (Z/rZ)× is ≥ 9(log n)2

4. Check (in Z[x]) that (x+ a)n ≡ xn + a (mod (n, xr − 1))

Remark. Though a valid primality test, you may notice AKS is not entirely practical to implement

due to the incredible amount of memory required to run the algorithm for decently large numbers

(which is the only realm in which its even relevant. Nevertheless, it still stands as an incredible

theoretical breakthrough.

3 Proof of AKS

Step 1 and 2 are fairly obvious hurdles for composite numbers, i.e if n fails step 1 or step 2 then it

trivially must be composite.

3.1 Validity of Step 3

Note that step 3 requires the existence of some number r with a special property, and it’s not

entirely intuitive that such a number is guaranteed to exist. We first deal with this.

Lemma 3.1.1. If n has no factors ≤ 100(log n)5, then there exists some r ≤ 100(log n)5

such that the order of n modulo r is ≥ 9(log n)2

Proof. Let R = 100(log n)5 and K = 9(log n)2. Assume for the sake of contradiction that ∀r ≤
R, ordr(n) < K. This would mean that r | (nj − 1), for some j < K. If this holds for every r ≤ R,

then:

lcm(1, 2...R) |
K−1∏
j=1

(nj − 1) <

K−1∏
j=1

n = nK(K−1)/2

Thus, we have an upper bound on lcm(1, 2...R). Let us now find a lower bound.

2

Consider the integral I :=
∫ 1

0
(x(1− x))Mdx, for some M ∈ N. Since ∀x ∈ [0, 1], x(1− x) ≤ 1/4, we

have that I ≤ 1
4M

.

Expanding out the integral, we get:

I =

∫ 1

0

xM −MxM+1 + · · ·+ (−1)Mx2M

=
1

M + 1
− M

M + 2
+ · · ·+ (−1)M

2M + 1

The common denominator of all those fractions is lcm(M + 1...2M + 1), and thus the common

denominator divides lcm(1, 2...2M + 1). Let I ′ = I · lcm(1, 2, ...2M + 1) ∈ N. Thus, we get:

1 ≤ I ′ ≤ 1

4M
lcm(1, 2...2M + 1)

=⇒ 4M ≤ lcm(1, 2...2M + 1)

Letting R = 2M + 1, we get lcm(1, 2...R) ≥ 4(R−1)/2 = 2R−1. We now have the following in terms

of K and R:

2R−1 ≤ (1, 2...R) < nK(K−1)/2

Plugging in R = 100(log n)5 taking the logarithm of the LHS of the inequality, we get:

log
(
2100(logn)5−1

)
= 100(log n)5 − 1

>
81

2
(log n)5 +

9

2
(log n)3

= log n(9(log n)2 + 1)9(log n)2/2

> log n(9(log n)2 − 1)9(log n)2/2

=⇒ 2R−1 > 2(logn)K(K−1)/2 = nK(K−1)/2

This gives us a contradiction, and thus there must be some r ≤ R with the desired property.

Remark. Note the technique we used for this proof: we assumed the negation, and created a

mathematical object lcm(1, 2...R). Then, under the assumption of the negation, we derived upper

and lower bounds for this object that end up contradicting one another. This is a common method

of contradiction and will come up in the next proof.

Having the criterion for step 3 ensured, we now proceed to the most difficult part - showing why

3

step 4 works.

3.2 Validity of Step 4

Theorem 3.2.1. If n passes through all steps 1) to 4), then n is prime

Proof. Suppose n passes step 4 and is composite, and let p be a prime factor of n. Note that due to

step 1 and 2, n ̸= pk and p > 100(log n)5. We know (x+ a)n ≡ xn + a (mod (n, xr − 1)). Consider:

(x+ a)n
2

= ((x+ a)n)n

≡ (xn + a)n (mod (n, xr − 1))

≡ xn2

+ a (mod (n, xnr − 1))

Note we went from line 2 to 3 by taking xn to be a variable. However, since (n, xnr−1) ⊂ (n, xr−1),

and using the fact we can repeat the process above for any power of n, we get:

(x+ a)n
i

≡ xni

+ a (mod (n, xr − 1))

Moreover, since p | n, we have (n, xr − 1) ⊂ (p, xr − 1), which gives us:

(x+ a)n
i

≡ xni

+ a (mod (p, xr − 1))

Since p is prime, it follows from the Binomial Theorem and Fermat’s Little Theorem that:

(x+ a)p
j

≡ xpj

+ a (mod (p, xr − 1))

We define M := {nipj : i, j ≥ 0}. Then, the above statements can be written as:

∀m ∈ M, (x+ a)m ≡ xm + a (mod (p, xr − 1)) (1)

Let k be the order of p in (Z/rZ)×, define q = pk, and consider the field Fq. We take some γ ∈ F×
q

with order r, which we know exists because r | (q − 1).

Since a ≤ r < p, a ∈ Fq. For each m ∈ M, consider (γ + a)m ∈ Fq. Our congruence from Equation

1 tells us that (x+ a)m = xm + a+ pf(x) + (xr − 1)g(x).

Letting x = γ, we note that γr − 1 = 0, and Fq having characteristic p implies pf(γ) = 0. Thus,

we get:

(γ + a)m = γm + a ∈ Fq,∀m ∈ M,∀a ≤ r

4

Consider G, the subgroup of F×
q generated by (γ + a), ∀a ≤ r. We will show that if a prime factor

p of n does indeed exist, then G cannot exist.

We take the elements of M modulo r. They form a subgroup of H ≤ (Z/rZ)×. Let |H| = h.

Upper Bound of G

Suppose we have m1,m2 ∈ M such that m1 ≡ m2 (mod r), and WLOG m1 > m2. Take

g =
∏r

a=1(γ + a)ea ∈ G. Then, gm1 =
∏r

a=1 ((γ + a)ea)
m1 =

∏r
a=1(γ

m1 + a)ea , by construc-

tion. Similarly, gm2 =
∏r

a=1(γ
m2 + a)ea .

Since ord(γ) = r, we have γm1 = γm2 =⇒ gm1 = gm2 . Thus, every g ∈ G is a root of

xm1−m2 ∈ Fq[x], which tells us |G| ≤ m1 − m2. If we can find such m1,m2 reasonably close to-

gether, we can restrict the order of G from above.

Let us consider all possible powers nipj such that 0 ≤ i, j ≤ ⌊
√
h⌋. These are all distinct since n is

not a perfect power of p. Note that the number of possible pairs (i, j) is given by (⌊
√
h⌋ + 1)2 >

h. By the Pigeonhole Principle, ∃(i1, j1) ̸= (i2, j2) such that ni1pj1 ≡ ni2pj2 (mod r), since |M
(mod r)| = h. These two numbers will thus be our m1,m2. Note that by our construction, they

can differ by at most n
√
hp

√
h ≤ n2

√
h. Thus:

|G| ≤ n2
√
h (2)

Lower Bound of G

Consider the set:

W :=

{
r∏

a=1

(γ + a)ea : ea ≥ 0,

r∑
a=1

ea ≤ h− 1

}
⊆ G ⊆ Fq

We claim that the elements of W are distinct in Fq. Suppose that
∏
(γ + a)ea =

∏
(γ + a)fa ∈ Fq,

where {ea} and {fa} are not all the same. Consider the polynomials
∏
(x+a)ea ,

∏
(x+a)fa ∈ Fp[x],

which must be distinct by unique factorization. We now form a new polynomial:

∆(x) :=
∏

(x+ a)ea −
∏

(x+ a)fa

Note that deg(∆) ≤ h − 1, by our construction of W . We also know that ∆(γ) = 0, by our

assumption. Now, for all m ∈ M, we observe that:

∏
(γm + a)ea =

∏
((γ + a)ea)

m
=

∏(
(γ + a)fa

)m

5

Thus, γm is a root of ∆ as well, ∀m ∈ M. Since ord(γ) = r, there are h distinct values of γm.

However, this means that ∆ has h roots, which is a contradiction. We conclude that our assumption

must have been false and so all the elements of W are distinct.

We now bound the number of ways to produce such exponents {ea} from below. One way is we

can simply consider that each ea is either 0 or 1. The number ways to satsify
∑r

a=1 ea ≤ h − 1 is(
r
0

)
+
(
r
1

)
+ · · ·+

(
r

h−1

)
. Since r > h, we have that this value is greater than or equal to:(

h+ 1

0

)
+

(
h+ 1

1

)
+ · · ·+

(
h+ 1

h− 1

)
≤ |W | ≤ |G|

This gives us our lower bound of:

|G| ≥ 2h+1 − h− 2 ≥ 2h (3)

Contradiction

Combining Equations 2 and 3 together, we get:

2h ≤|G| ≤ n2
√
h

=⇒ h ≤ 2
√
h log n

=⇒
√
h ≤ 2 log n < 3 log n

=⇒ h < 9(log n)2

However, since the elements of M are generated by n and p, h ≥ ordr(n) ≥ 9(log n)2.

Thus, we arrive at a contradiction, which means n cannot have a prime factor, and thus n itself

must be prime.

4 Running Time Analysis

We go through step by step of the algorithm to show that it can and does indeed run in polynomial

time. We first go through some facts of how many steps it takes to perform basic arithmetic

operations.

• Adding or subtracting two n-bit numbers takes about n steps. This can be seen through basic

algorithms like column addition

6

• Considering column multiplication and long division, doing these operations on n-bit numbers

takes at most n2 steps. However, using some tricks due to Gauss and Karatsuba, we can reduce

the exponent to something along the lines of n1.5 steps.

• Exponentiation in modular arithmetic can be done relatively fast due to repeated squaring

and reducing after every multiplication. In particular, raising an n-bit number to an n-bit

power modulo some n-bit number can be done in < n3 steps.

Thus, we see how these operations are all rapid, in the sense that they can be performed in a time

that is polynomial in the input size.

Definition (Big O notation). Given functions f(x) and g(x), we say f(x) = O(g(x))

if |f(x)| ≤ Mg(x) for some constant M , and for all x greater than some finite x0.

Thus, in the following running time analysis calculations, we will omit all constants and simply

calculate the time complexity in terms of some polynomial of log n.

Step 1

To show n is not a perfect power, we have to see if n = mk for k ∈ [2, log n]. For each power k,

we can perform a binary search from 1 to n to see if anything to the power of k equals n. Each

exponentiation calculation will take (log n)3 steps, and each binary search will take (log n) steps.

Doing this for every power of k, we get something less than (log n)5 steps.

Step 2

To check that n has no factors less than 100(log n)5, we divide n by each k such that k ∈
[2, 100(log n)5]. Each division would take (log n)(log k) ≤ (log n)2 steps. Doing this for every

k, it would take at most C(log n)7 steps, for some constant C < 1.

Step 3

We want to find some r ≤ 100(log n)5 such that the order of n modulo r is greater than 9(log n)2.

We run over all 9(log n)2 ≤ r ≤ 100(log n)5, and check that none of n, n2, n3...n9(logn)2 are 1.

To reduce each n modulo r, it takes (log n)(log r) ≤ (log n)2 steps. Each multiplication, after

reduction, takes ≤ (log r)2. Thus, checking this property for a single r takes (log r)2(log n)2 ≤
(log n)3 steps.

Doing this for all possibilites of r, we have at most (log n)8 steps.

7

Step 4

We need to check ∀a ≤ r whether (x + a)n ≡ xn + a (mod (n, xr−1)). Recall that exponentiation

is fairly rapid via repeated squaring and reducing modulo (n, xr − 1) every time.

Given polynomials f, g (mod (n, xr − 1)), to find fg ((n, xr − 1)) takes r2 multiplications of coef-

ficients ≤ n. Recall that each such multiplication takes ≤ (log n)2 steps, and reduction is very fast,

so we can say the total time per multiplication and reduction is (log n)2. Thus, in total we have

≤ r2(log n)2 ≤ (log n)13 steps.

Doing this for every single a ≤ r ≤ 100(log n)5, we have (log n)18 steps.

Thus, the overall time complexity of AKS is of the order O(log n)18

5 Other Primality Tests

AKS is the only known polynomial time that is both deterministic and general-purpose, that is, it

can definitively show a given number is composite or prime in any scenario. There are however,

other, faster primality tests that are either probabilistic or only work for specific types of primes.

• The Miller-Rabin test is a probabilistic polynomial time test - that is, it determines whether

a number is likely to be prime in polynomial time, but cannot confirm it in polynomial time.

If the Riemann Hypothesis is true, it is known that the test can be done in polynomial time,

in particular O((log n)4) at worst.

• The Lucas-Lehmer test is deterministic, but only for potential Mersenne primes. This test

can be done in O((log n)3) steps.

• The Elliptic-Curve Primality Test is deterministic and general purpose, but its worst-case

time complexity is currently unknown. It is heuristically suspected to be O((log n)5+ϵ), but

it is not even confirmed whether it always runs in polynomial time or not.

References

Mafs tingz.

8

https://en.wikipedia.org/wiki/Miller\OT1\textendash Rabin_primality_test
https://en.wikipedia.org/wiki/Lucas\OT1\textendash Lehmer_primality_test
https://en.wikipedia.org/wiki/Elliptic_curve_primality

	Introduction
	The AKS Algorithm
	Proof of AKS
	Validity of Step 3
	Validity of Step 4

	Running Time Analysis
	Other Primality Tests

