
Googology

Aaryan Sukhadia

Minicourse, PROMYS 2022

1 Introduction

Readers may remember a childhood experience of competing against their friends or rivals in a race

to name the biggest number they could. Obviously, having grown up and matured as mathemati-

cians now, the majority of us have realized this is a ridiculous and futile exercise. Some of those

kids, however, never seemed to get the memo. These people are googologists.

We will explore different ways of expressing larger and larger numbers, and what they could possibly

be useful for.

2 Graham’s Number, Knuth’s Arrow Notation

Let us consider an n-dimensional hypercube, and let us draw a line from each vertex to every other

vertex.

Now, we color all the edges (there are
(
2n

2

)
of them) either red or blue. We want to do this in a

way to avoid a complete graph on 4 vertices that form a square, as shown in Figure 1.

Q:. What is the smallest n for which every possible coloring produces the configuration we

are trying to avoid?

We have a lower bound of 13, and an upper bound of Graham’s Number. This is a very, very bad

range. To describe Graham’s number we need to introduce Knuth’s arrow notation.

1



Figure 1: A coloring of the 3-cube. This configuration is something we are trying to avoid.

Definition. Let a ↑n b represent a ↑ · · · ↑︸ ︷︷ ︸
n times

b. This is defined by:

a ↑n b =


ab, if n = 1

1, if n > 1 and b = 0

a ↑n−1 (a ↑n (b− 1)) otherwise

Remark. The convention is that this arrow notation is right-associative. In other words, a ↑ b ↑
c = a ↑ (b ↑ c) rather than (a ↑ b) ↑ c

For example, 3 ↑ 3 = 33 = 27. Let us compute 3 ↑↑ 3:

3 ↑↑ 3 = 3 ↑ (3 ↑↑ 2)

= 3 ↑ (3 ↑ (3 ↑↑ 1))

= 3 ↑ (3 ↑ (3 ↑ (3 ↑ 0)))

= 33
3

= 327

≈ 7.6× 1012

Exercise 2.0.1. Show that a ↑↑ b = aa
..a
}
b times

Now let us compute 3 ↑↑↑ 3. We have:

3 ↑↑↑ 3 = 3 ↑↑ (3 ↑↑ 3)

= 33
··
·3
}
3 ↑↑ 3 times

2



This number is expected to have more digits than can fit in the universe. It is beyond any sort of

human comprehension. Now that we have this intution for the sheer stupid magnitude of how fast

this arrow notation grows, we are ready to define Graham’s Number.

We let G1 := 3 ↑4 3 (which is ridiculously larger than 3 ↑3 3, which we just calculated). We then

create the following recurrence relation:

Gn+1 = 3 ↑Gn 3 = 3 ↑ · · · ↑︸ ︷︷ ︸
Gn arrows

3

In other words, the number of arrows itself in G2 is incomprehensibly large, which makes the num-

ber of arrows in in G3 double incomprehensibly large, and so on. Graham’s Number is defined as

G64.

Thus, the answer to our question is 13 ≤ n ≤ G64.

3 Posets and SSCG(3)

Definition. A pair (P,≤) is a partially ordered set (poset) if P is a non-empty set

and ≤ is a relation on P such that:

• ∀x ∈ P, x ≤ x (reflexivity)

• ∀x, y,∈ P , x ≤ y, y ≤ x =⇒ x = y (symmetry)

• ∀x, y, z ∈ P , (x ≤ y) ∧ (y ≤ z) =⇒ x ≤ z (transitivity)

Example 3.0.1. The usual ordering on (R,≤) is a poset.

Note that not every element has to be comparable to every other element in a poset, however. If

this is the case, as it is with (R,≤), we call it a totally ordered set.

Example 3.0.2. Given any set X, consider the poset of the powerset P (X) ordered by inclusion.

(i.e A ≤ B iff A ⊆ B).

Verify that these satisfy the poset axioms. Moreover, note that if X = {1, 2, 3, 4}, then A = {1, 2}
and B = {3, 4} are not comparable.

3



Definition. Given a poset (P,≤), a chain C ⊆ P is a set of elements where every-

thing is comparable to everything else. An antichain A ⊆ P is a set of elements

where nothing is comparable to anything (except itself).

Example 3.0.3. If X = {1, 2, 3, 4}, and our poset is P (X) ordered by inclusion, then C =

{∅, {1}, {1, 3}, X} is a chain and A = {{1}, {2, 3}, {4, 3}} is an antichain.

Definition. We say a poset is well-quasi-ordered if there is no infinite descending

chain, and if there is no infinite anti-chain.

Example 3.0.4. (N,≤) is a well-quasi-ordered poset.

Let us take a sharp turn and discuss graphs. Given a graph G, if G′ can be obtained from G be

the following 3 steps:

1. Deleting an edge

2. Deleting a vertex

3. Deleting an edge and making the two endpoints of the edges the same vertex,

then G′ is said to be a minor of G.

Exercise 3.0.5. Let G denote the set of all graphs. Show that G ordered by the minor relationship

(i.e H ≤ G iff H is a minor of G ) gives us a poset

Theorem 3.0.6 (Robertson-Seymour). The set of graphs ordered by the minor relation is

well-quasi-ordered.

Showing that G has no infinite descending chain is quite simple; every minor of a graph has fewer

edges or vertices, therefore at some point we must remove everything and we’ll be left with the

empty graph, and thus we can never have an infinite descending chain. The non-trivial part how-

ever, is that there is no infinite anti-chain. Essentially what this is saying is that there is no infinite

collection of graphs such that no graph is the minor of another.

Definition. A simple sub-cubic graph (SSCG) is a graph where all edges have

multiplicity 1 and all vertices have degree at most 3.

4



For some given integer k, suppose we have a sequence of simple sub-cubic graphs S1, S2... such that

Si has at most i + k vertices, and that ∀i, j, i < j =⇒ Si is not a minor of Sj . Let a length of a

maximal such sequence be denoted SSCG(k).

Note by Robertson-Seymour that SSCG(k) is finite for all k, else that would imply an infinite

antichain. However, these sequences can grow absurdly large.

Exercise 3.0.7. Show SSCG(0) = 1, SSCG(1) = 5

SSCG(3) is MUCH bigger than Graham’s number. In fact, for readers familiar with the TREE

function, SSCG(3) >> TREE(3). What’s wilder is that it is known that SSCG(13) >>>

TREETREE(3)(3) = TREE(TREE · · ·TREE(︸ ︷︷ ︸
TREE(3) times

3)) · · · ).

Remark. Though the definition of the TREE function is outside the scope of these notes, it is

worth emphasizing that TREE(3) > GG64
, i.e continuing the recursive formula used for Graham’s

Number G64 times.

4 Turing Machines and Busy Beaver Numbers

A Turing Machine is perhaps the most elementary model of computation, in which you have a

roll of tape and a machine that can go around writing symbols on that tape, as shown in Figure 2.

Figure 2: The TM can read and write on one square of the tape at a time, and can move left or
right by one square

Pretty much any computation is equivalent to a Turing Machine performing the following steps,

known as the n-state Busy Beaver game:

5



• The TM has n operational ’states’, plus a halting state in which it stops and does nothing.

These states are numbered 1, 2...n and it starts on state 1. We can denote the halt state as

state 0.

• The TM starts on an infinite roll of tape filled with squares, and each square can be either a

0 or a 1. In the initial stage, all squares are 0s.

• The TM has a transition function with two inputs:

1. Current (non-Halt) state of the TM

2. Symbol in the current tape square

and three outputs:

1. Whether to keep the square the same value or flip the bit.

2. Whether to move left or right after the step

3. The state to transition into, potentially the same exact state or the halt state.

For each state, for each input we have 2 options of flipping or preserving the bit given an input, 2

options of the direction to move in afterwards, and (n+1) options for which state to go into. This

gives us a total of 4(n+1) options for each input on each state, giving us (4n+4)2 options on each

state. Doing this for all n states gives us (4n+ 4)2n possible n-state Turing machines.

Observation. There are two options: either the TM will continue looping forever, or at some point

it will halt

Let’s just consider the set of TMs on n states that eventually halt at some point. We call the

number of 1s left on the tape after the halting point the score of the n-state Busy Beaver game.

Definition. The Turing Machine with the largest score is called the champion of the

n-state Busy Beaver game. The function BB(n) returns the score of the champion.

Theorem 4.0.1. BB(n) grows faster than any computable function (by computable, we

mean any function that can be simulated on some Turing Machine).

Proof. Suppose there existed a way for a Turing Machine M to compute BB(n) for any input n.

Let M have m different states. Take another Turing Machine L that takes any input of n 1s and

outputs 2n 1s, and let L have ℓ states. We then perform the following algorithm using a Turing

Machine K:

6



• Print n 1s (requires n states)

• Print 2n 1s (requires ℓ states)

• Print BB(BB(2n)) 1s (requires 2m states)

Thus, K has ≤ 2m + ℓ + n states, but it can print BB(BB(2n)) 1s. Thus, BB(n + 2m + ℓ) ≤
BB(BB(2n)) Note that the Busy Beaver function is strictly monotone increasing, and that m and ℓ

are fixed. Thus, increasing n to arbitrarily large numbers gives us a contradiction (e.g if n > 2m+ℓ)

Q:. Can we disprove Goldbach’s Conjecture by only testing a finite number of counterexam-

ples?

Goldbach’s conjecture asks if every even number can be written as the sum of two primes. As of now

there is no known counterexample, but there is no known proof either. Note that testing if an even

number is the sum of two smaller primes is a computable function. Thus, if we can compute an n-

state Turing Machine to test if a given even number is a counter-example, and print the smallest one.

Using BB(n), we can extract essentially the largest number N that an n-state Turing machine can

output before halting. In otherwords, if our specially constructed TM does not halt after testing if

N is a counterexample, we know that it won’t halt, and therefore there cannot be a counterexample.

Thus, we only have to check a finite number of values! Simple!

What makes this practically intractable is the sheer size of these Busy Beaver numbers. Graham’s

function, the TREE function and the SSCG function are all computable. This means that the

busy beaver numbers grow faster than all of them.

References

Gary Googology.

7


	Introduction
	Graham's Number, Knuth's Arrow Notation
	Posets and SSCG(3)
	Turing Machines and Busy Beaver Numbers

