Polynomials in Combinatorics Seminar Notes

Aaryan Sukhadia

1 Introduction

Suppose we have a combinatorial problem where we have a set C of combinatorial objects that relate to one another in some way, and we are trying to bound |C|. A slick combinatorial trick we can use is creating an injection:

$$f: \mathcal{C} \to K[\vec{x}]$$

, where $K[\vec{x}]$ is some vector space of polynomials over a field K.

From there, we want to show that $f(\mathcal{C})$ is necessarily a linearly independent set. If we can then show that all elements of $f(\mathcal{C})$ must necessarily be of a certain form, we can restrict the dimension of $K[\vec{x}]$, thereby restricting the size of \mathcal{C} , using linear independence.

This general method is in the same class as Noga Alon's famous *Combinatorial Nullstellensatz*, and there are a host of similar methods revolving around using polynomials to solve combinatorial problems.

We present a gallery of examples. Though written quite briefly, some of them can take more than an hour to properly understand in detail (or at least, they did for me).

2 Point Sets with restricted distances

Q:. How many points can we have in \mathbb{R}^n such that every pairwise distance is in a fixed set $\{a, b\}$?

Example 2.0.1. In \mathbb{R}^2 , we can have 5 points with pairwise, arranged in a regular pentagon, as shown in Figure 1:

To try and generalise to \mathbb{R}^n , we might attempt something like the following: denote x^P as the indicator vector of a pair $P \subset [n]$. Note that the entries of each *n*-tuple x^P will all be 0 except

Figure 1: Convince yourself that this Satanic-looking pentagram is the best we can do

for 2 of them. Note that 2 distinct vectors can differ in either 2 or 4 places, and so the distances between them will be either $\sqrt{2}$ or 2.

There are $\binom{n}{2}$ such vectors that can exist, so we know the answer is *at least* quadratic in *n*. We now show that we cannot do much better.

Theorem 2.0.2. We cannot have more than $\frac{1}{2}(n+1)(n+4)$ points in \mathbb{R}^n with 2 possible pairwise distances.

Let S be a set of points with 2 possible pairwise distances a or b. Then, for any $\vec{s_i}, \vec{s_j} \in S$, we make the following observation:

$$(||\vec{s_i} - \vec{s_j}||^2 - a^2)(||\vec{s_i} - \vec{s_j}||^2 - b^2) = 0$$

For each $\vec{s_i}$, we set up a polynomial as follows:

$$f_i(\vec{x}) = (||\vec{s_i} - \vec{x}||^2 - a^2)(||\vec{s_i} - \vec{x}^2|| - b^2)$$

Note that $f(\vec{x}) = 0 \iff \vec{x}$ is a valid possible point with $\vec{s_i}$. Thus, what we want for S is $\forall i \neq j$, $f_i(\vec{s_j}) = 0$, and observe that $f_i(\vec{s_i}) = (ab)^2$.

Let |S| = m. We now show an important result.

Lemma 2.0.3. $f_1, f_2...f_m$ are linearly independent in $K[\vec{x}]$.

Proof. Suppose that we had non-trivial linear combination equalling 0: $\sum_{i=0}^{m} \alpha_i f_i = 0$. If we plug in $\vec{s_j}$ into this, we get:

$$\sum_{i=0}^{m} \alpha_i f_i(\vec{s_j}) = \alpha_j f_j(\vec{s_j})$$
$$= \alpha_j a^2 b^2 = 0$$
$$\implies \alpha_j = 0$$

And of course we can do this for any $\vec{s_j}$, and hence we get the polynomials must be linearly independent, proving our lemma.

We now try and bound the dimension of the subspace in which these polynomials exist.

Let $W := \operatorname{span}(f_1 \dots f_m) \subset K[\vec{x}]$. Each f_i is of the form:

$$f_i(\vec{x}) = \left(\sum_{\ell=1}^n x_\ell^2 - 2\sum_{\ell=1}^n p_i \ell x_\ell + q^2\right) \left(\sum_{k=1}^n x_k^2 - 2\sum_{k=1}^n p_i k x_k + r^2\right)$$

Letting $X := \sum_{\ell=1}^{n} x_{\ell}^2$, we get:

$$(X - 2\sum_{\ell=1}^{n} p_{i\ell}x_{\ell} + q^2)(X - 2\sum_{k=1}^{n} p_{ik}x_k + r^2)$$

Thus, W can be generated by the following polynomials:

- X^2 There is 1 such polynomial
- $x_k X, k \in [n]$ There are n such polynomials
- $x_{\ell}x_k$, for $k \neq \ell \in [n]$ There are $\binom{n}{2}$ such polynomials
- $(x_k)^2, k \in [n]$ There are *n* such polynomials
- $x_k, k \in [n]$ There are n such polynomials
- 1 there is 1 such polynomial

Adding all these generators together, we get that:

$$\dim(W) \le \binom{n}{2} + 3n + 2$$
$$= \frac{1}{2}(d+1)(d+4)$$

which was what we wanted to show.

3 Medium-Sized Intersections

The field of *extremal set theory* problems asks, given a set and some subset with desired properties, how large can that subset be? We analyse such a problem here.

Let n = 4p for some prime P, and let $\mathcal{A} \subset P([n])$ be the set of all subsets of cardinality 2p - 1. We will show that it is somewhat 'hard' to avoid intersections of 'medium' sizes relative to the subsets, that is intersections of size p - 1.

Theorem 3.0.1. Given a family $\mathcal{F} \subseteq \mathcal{A}$, if $|\mathcal{F}| > \frac{1}{1,1^n} |\mathcal{A}|$, then $\exists A, B \in \mathcal{F}$ such that $|A \cap B| = p - 1$

Suppose we have a family \mathcal{F} without any A, B with intersection size p-1. For any $A \in \mathcal{F}$, assign a polynomial $f_A : \mathbb{F}_p^n \to \mathbb{F}_p$ as :

$$f_A(x_1, x_2...x_n) = \prod_{s=0}^{p-2} \left(\sum_{i \in A} x_i - s\right)$$

Let $\mathbb{1}_A$ be the indicator vector of $A \in \mathcal{F}$. Then we note that $f_A(\mathbb{1}_B) = \prod^{p-2} (|A \cap B| - s)$. Moreover, note that $f_A(\mathbb{1}_A) = \prod^{p-2} (|A| - s) = \prod^{p-2} (2p - 1 - s)$. Since every term of this product is non-zero in \mathbb{F}_p , the value of $f_A(\mathbb{1}_A) \neq 0$ for all $A \in \mathcal{F}$ Combining those 2 facts, we get:

Claim.

$$f_A(\mathbb{1}_B) \neq 0 \iff A = B$$

Thus, using the same logic as in Lemma 2.0.3, we deduce that $\{f_A : A \in \mathcal{F}\}$ are linearly independent polynomials in $\mathbb{F}_P[x]$.

<u>One more trick</u>: We make use of the fact that our inputs are all in $\{0,1\}^n$. Given any f_A , we create g_A by crossing out the exponents in f, i.e replacing any x_i^k by x_i . We observe that $g_A(\mathbb{1}_A) = f_A(\mathbb{1}_A) \neq 0$ and for $B \neq A$, $g_A(\mathbb{1}_B) = f_A(\mathbb{1}_B) = 0$. Thus, by the same logic, all the polynomials $\{g_A : A \in \mathcal{F}\}$ are also linearly independent.

Thus, the space $W \subset \mathbb{F}_p[x]$ in which all the polynomials exist is spanned by:

$$W = \operatorname{span}\left(\{\prod_{i \in S} x_i : S \subset [n], |S| \le p - 1\}\right)$$

We conclude that $\dim(W) = \sum_{k=0}^{p-1} {n \choose k}$. Through the power of mathematical behind-the-scenes calculations, we can conclude that $\dim(W) < \left(\frac{2}{3}\right)^{n/4} {4p \choose 2p-1} < \frac{1}{1 \cdot 1^n} \mathcal{A}$.

Thus, we conclude that if $\mathcal{F} \geq \frac{1}{1,1^n} |\mathcal{A}|$, no matter the elements of \mathcal{F} , there must exist $A, B \in \mathcal{F}$ such that $|A \cap B| = p - 1$.

4 Chromatic Number of \mathbb{R}^n

Definition. A coloring of a metric space X is an assignment of a color to each point $x \in X$ such that there are no points with the same color that are distance 1 apart. If we can do this with k colors, we say X is k-colorable. The chromatic number $\chi(X)$ is the minimum k for which X is k-colorable

Q:. What is the chromatic number of \mathbb{R}^n ?

An easy lower bound of n + 1 is given by the *n*-simplex, but we can do much better.

Theorem 4.0.1. $\chi(\mathbb{R}^n) \ge 1.1^n$

Proof. Let $\mathcal{A} = \{A \subset [n] : |A| = 2p - 1\}.$

For every $A \in \mathcal{A}$, let $\vec{x_A} \in \mathbb{R}^n$ be an indicator vector defined as:

$$(\vec{x_A})_i = \begin{cases} \frac{1}{\sqrt{2n}} & \text{if } i \in A \\ -\frac{1}{\sqrt{2n}} & \text{if } i \notin A \end{cases}$$

Note that $\forall A \in \mathcal{A}, ||\vec{x_A}||^2 = \sum_{i=1}^n \frac{1}{2n} = \frac{1}{2}.$

For 2 distinct $A, B \in \mathcal{A}$, consider $||\vec{x_A} - \vec{x_B}||^2$. We have the following:

$$||\vec{x_A} - \vec{x_B}||^2 = ||\vec{x_A}||^2 + ||\vec{x_B}||^2 - 2\vec{x_A} \cdot \vec{x_B} = 1 - 2\vec{x_A} \cdot \vec{x_B}$$

Observe that $\vec{x_A} \cdot \vec{x_B}$ would be equal to $\frac{1}{2n}(|A \cap B| + |(A \cup B)'| - |A\Delta B|)$. This arises from the fact that the absolute value of the product of any two coordinates is $\frac{1}{2n}$. If *i* is in both A and B or in neither A nor B, then the product of the *i*th coordinates of the vectors would be positive and if it was in only one of A or B it would be negative.

We know |A| = |B| = 2p - 1, and let $s = |A \cap B|$. Then,

$$|A\Delta B| = |A| + |B| - 2|A \cap B| = 4p - 2 - 2s$$

We also see that:

$$|(A \cup B)'| = 4p - (|A\Delta B| + |A \cap B|) = 4p - (4p - 2 - 2s) - s = 2 + s$$

Thus,

$$2\vec{x_A} \cdot \vec{x_B} = 2(\frac{1}{2n}(s+2+s-4p+2+2s))$$
$$= \frac{1}{n}(4s-4p+4)$$
$$= \frac{4}{n}(s-(p-1))$$

which is equal to 0 exactly when s = p - 1.

Thus, $||\vec{x_A} - \vec{x_B}||^2 = 1 \implies ||\vec{x_A} - \vec{x_B}|| = 1$ when $|A \cap B| = p - 1$.

Going back to our construction, we have a set of points X in \mathbb{R}^n defined by $X = \{x_A^r : A \in \mathcal{A}\}$. Each point in X will have one of k colors. Since $k < 1.1^n$, by the pigeonhole principle there must exist a set $X_F \subset X$ of same-colored points such that $|X_F| > \frac{X}{1.1^n}$. Since there is a bijection between our set of points X and sets in \mathcal{A} , the subset X_F corresponds to a subset $\mathcal{F} \subset \mathcal{A}$ such that $|\mathcal{F}| > \frac{|\mathcal{A}|}{1.1^n}$.

Using Theorem 3.0.1, $\exists A, B \in \mathcal{F}$ such that $|A \cap B| = 1$, which implies $||\vec{x_A} - \vec{x_B}|| = 1$, and so there must exist two points of the same color with Euclidean distance 1.

Thus, $\chi(\mathbb{R}^n) \ge 1.1^n$, and so the chromatic number is (at least) exponential in terms of n.

Remark. This remarkably simple technique gives us something pretty close to the forefront of modern combinatorial research, because the best known lower bound is given by $\chi(\mathbb{R}^n) > (1 + o(1))(1.2)^n$, which was shown by Frankl and Wilson in 1981.

5 Covering the Hypercube

Q:. How many hyperplanes do we need to cover all but one vertices of the hypercube?

Definition. We define a **canonical hypercube** in \mathbb{R}^n to be the set of points in $\{0,1\}^d$.

We aim to cover every vertex of the canonical hypercube except for the origin. Recall a hyperplane in \mathbb{R}^n is a set of vectors \vec{x} satisfying $\sum_{i=1}^n a_i x_i = b$, for some $b \in \mathbb{R}$, and not-all-zero $a_i \in \mathbb{R}$. Note we can always cover all but one vertices using n hyperplanes:

$${H_1 := x_1 = 1, H_2 := x_2 = 1, ..., H_n := x_n = 1}$$

We show that this is the best you can do.

Theorem 5.0.1. You always need at least n hyperplanes to cover all but one vertex of the canonical hypercube in \mathbb{R}^n .

Proof. Suppose we have *m* hyperplanes. Each hyperplane H_i can be expressed by the equation $\sum_{j=1}^n a_i j x_j = b_i$. Note that $b_i \neq 0$, otherwise the hyperplane would cover 0, which is not what we want. Thus, we can scale all of them and assume WLOG that $b_i = 1, \forall i$.

Define a function $f: \{0,1\}^n \to \mathbb{R}$ as:

$$f(\vec{x}) = \prod_{i=1}^{m} \left(1 - \sum_{j=1}^{n} a_i j x_J \right) - \prod_{j=1}^{n} (1 - x_j)$$

and let this live in the space of such polynomials V.

Observation. For any $\vec{x} \in \{0,1\}^n$, $f(\vec{x}) = 0$. As an exercise, verify this.

We proceed with proof by contradiction. If m < n, then we note that f has degree n, and moreover the only term in f with degree n is the monomial $(\pm)x_1x_2...x_n$. We can think of f as a linear combination of monomials, and since f is the zero function in this vector space, it follows that $x_1x_2...x_n$ must be expressible as a linear combination of the other terms in f. Specifically, it must be a linear combination of monomials of lower degree.

<u>One more trick...</u> again: We use the same idea as in the problem of medium-sized intersections. Since f is a function taking inputs in $\{0, 1\}^n$, it holds that $x_i^2 = x_i$ for any term, so we can replace each monomial with its exponent-less counterpart.

Thus, $x_1x_2...x_n$ must be a linear combination of monomials of the form:

$$\prod_{i \in I \subset [n]} x_i$$
, which we denote by κ_I

Claim. $\{\kappa_I : I \subseteq n\}$ is a linearly independent set in V.

Suppose we had some linear combination:

$$\sum_{I \subseteq [n]} \alpha_I \kappa_I = 0 \tag{1}$$

Let I^* be a minimal subset of [n] such that $\alpha_{I^*} \neq 0$. Define the vector $\vec{x} \in \{0,1\}^n$ by $x_i = 1$ if $i \in I^*$, and 0 otherwise.

The only non-zero term remaining in 1 is the term $\alpha_{I*}\kappa_{I*} = \alpha_{I*} = 0$, which is a contradiction, and we are done.

Remark. We can generalize this problem to ask how many hyperplanes do we need to cover all-butone point of the canonical hypercube at least k times each? This was recently solved by Sauermann and Wigderson (who was a former T.A of mine!), showing a tight lower bound of n + 2k - 3. The methods used are essentially the same as those discussed in these notes.